

Organization Committee

- András Benczúr head of Inf. Lab., INFO SZTAKI
- Noémi Friedman post-doc, WIRE TUBS, GRK
- Adnan Ibrahimbegović chair in Mechanics Picardie, LMR UTC, CEACM
- Rita M. Kiss prof. MOGI BME
- László Kollár head of Vasarhelyi Pal doctoral school of civil eng., HSZ BME
- Anna Kučerová, asisstant prof,, MEC CTU
- Hermann G. Matthies head of WIRE TUBS.
- L. Gergely Vigh associate prof., HSZ BME
- Mihály Weiner associate prof., AT BME
- Elmar Zander, post-doc, WIRE TUBS

Institutes/Organizations:

Central European Association for Computational Mechanics (CEACM)

Technische Universität Braunschweig (TUBS), Germany

- Institute of Scientific Computing (WIRE TUBS)
- •Graduiertenkolleg 2075 (GRK 2075)

Inst. for Comp. Science and Control (SZTAKI), Hungary •Informatics Lab. (INFO SZTAKI)

UTC-Sorbonne Universités (UTC), France

Lab. de Mécanique Roberval, Centre de Recherche Royallieu (LMR UTC)

Budapest Univ. of Techn. and Ec. (BME), Hungary

- •Dpt. of Mechatronics, Optics and Mech. Eng. Informatics, Fac. of Mech. Eng. (MOGI BME)
- Dpt. of Analysis, Fac. of Natural Sciences (AT BME)
- •Dpt. of Structural Analysis, Fac. of Civil Eng. (HSZ BME)

Czech Techn. University in Prague (CTU), Czech Rep.

•Dpt. of Mechanics, Fac. of Civil Eng. (MEC CTU,

For further information:

Dr. Noémi Friedman

Technische Universität Braunschweig Institut für Wissenschaftliches Rechnen Mühlenpfordtstr. 23 38106 Braunschweig Tel. +49 531 391-3013 Fax +49 531 391-3003 paramunc-sc@tu-braunschweig.de www.wire.tu-bs.de/paramunc

PARAMUNC

PARAMetric UNCertainty

Summer School and Workshop Budapest, 3-7 July 2017 Bridging the Gap Between Engineering, Mathematics and Computational Science

Uncertainty Quantification,
Parameter Identification and
Challenges in
Engineering Computations

PARAMetric UNCertainty

Summer School

3-5 July 2017

Addressed topics:

General theoretical background of uncertainty quantification and parameter identification

- Basics of probability theory
- •Advanced methods for uncertainty quantification and the analysis of the propagation of uncertainties
- •Global sensitivity analysis
- Parameter identification via probabilistic approaches
 Practical implementation using SGLIB, an open source MATLAB library package
 Specialized topics:
- Fragility assessment of structures
- •Parametric uncertainty in multiscale analysis
- •Optional topics from different fields selectable from the plenary lectures of the workshop

Lecturers

- · Noémi Friedman, WIRE TUBS
- Adnan Ibrahimbegović, LMR UTC
- · Hermann G. Matthies, WIRE TUBS
- · Habib N. Najm, Sandia National Laboratory Livermore, USA
- Elmar Zander, WIRE TUBS
- L. Gergely Vigh, EO BME
- · Mihály Weiner, TT BME,

Workshop

6-7 July 2017

Topics of interest

Parametric problems in engineering ● Uncertainty quantification ● Sensitivity analysis ● Inverse methods,
 optimization ● Reliability analysis ● Machine learning and data mining in engineering ● High dimensional problems: model reduction, low-rank representation ● Robust control

Plenary lectures

- Adnan Ibrahimbegović: Probability-Based Explanation to Size Effect in Localized Failure of Massive Structures
- Hermann G. Matthies: Bayesian Identification and Calibration
- András Benczúr: Predictive Analytics in Manufacturing IoT Data
- Habib N. Najm: Parameter Estimation in Chemical Systems
- Bálint Daróczy: Tutorial on Deep Learning
- Elmar Zander: Nonlinear update methods based on the conditional expectation — the Minimum Mean Square Estimator (MMSE) and its application
- Anna Kučerová: Robust and Optimal Experiment Design for Identification of Thermophysical Parameters based on Global Sensitivites
- Richard Semaan: Optimal sensor placement using machine learning
- Manuel Chiachío-Ruano: Bayesian learning and uncertainty quantification at a system level: Introductory concepts and engineering applications by Petri Nets
- Juan Chiachío-Ruano: A hierarchical Bayesian approach to multi-scale inverse problems

Target Audience

- •PhD students, advanced master's students, researchers, practicing engineers
- •Mechanical/civil/chemical/environmental engineers interested in advanced computational methods
- •Application oriented computer scientists/ mathematicians/ physicists

(Basic knowledge of MATLAB is recommended for the small tutorials of the summer school)

Location

Summer school: BME, Budapest University of

Technology and Economics

Workshop: SZTAKI Hungarian Doctoral Academy, Institute for Computer Science and Control

Registration

See more information and register under www.wire.tu-bs.de/paramunc

Early registration untill 28 April, 2017 (extended deadline)